Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods

ثبت نشده
چکیده

In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals that arise in enriched finite element methods. For discontinuous functions we present an algorithm for the construction of Gauss-like quadrature rules over arbitrarily-shaped elements without partitioning. In case of singular integrands, we introduce a new polar transformation that eliminates the singularity so that the integration can be performed with fewer integration points while maintaining high accuracy. We combine the quadrature construction technique with a point elimination algorithm, which ensures that the final quadratures have as few number of Gauss points as possible without sacrificing accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method

New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadra...

متن کامل

Weighted Quadrature Rules for Finite Element Methods

We discuss the numerical integration of polynomials times exponential weighting functions arising from multiscale finite element computations. The new rules are more accurate than standard quadratures and are better suited to existing codes than formulas computed by symbolic integration. We test our approach in a multiscale finite element method for the 2D reaction-diffusion equation. Standard ...

متن کامل

Applications of Gauss-Radau and Gauss-Lobatto Numerical Integrations Over a Four Node Quadrilateral Finite Element

In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formulation for second order Partial Differential Equation via Galerkin weighted residual method in closed form. Convergence to the analytical solutions and efficiency are depicted by numerical ex...

متن کامل

Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain

In this paper, we examine the influence of numerical integration on finite element methods using quadrilateral or hexahedral meshes in the time domain. We pay special attention to the use of Gauss-Lobatto points to perform mass lumping for any element order. We provide some theoretical results through several error estimates that are completed by various numerical experiments. c © ??? John Wile...

متن کامل

Integration Techniques for Two Dimensional Domains

Abstract In this work, three different integration techniques, which are the numerical, semi-analytical and exact integration techniques are briefly reviewed. Numerical integrations are carried out using three different Quadrature rules, which are the Classical Gauss Quadrature, Gauss Legendre and Generalized Gaussian Quadrature. Line integral method is used to perform semi-analytical integrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009